3,708 research outputs found

    Quantitative risk analysis for road tunnels complying with EU regulations

    Get PDF
    Tunnels have improved the connection of regions within the European Commission (EC) and have been used lately as a catalyst for economic development of previously isolated regions. However, the increasing number of these important infrastructures is raising upfront an endogenous problem, which is the severity of accidents that may occur. These risks have much greater impact when heavy goods vehicles (HGVs) or dangerous goods (DGs) are involved in the accident. As a result, the EC launched the EC Directive 2004/54/EC. In order to achieve a minimum acceptable level of safety, the EC Directive 2004/54/EC suggests, apart from the measures imposed based on tunnel characteristics, the implementation of a risk analysis in cases such as the opening of the road tunnel to DGs. The most widely accepted method for such quantitative risk analysis (QRA) is the OECD/PIARC QRA Model. This research exploits the QRA Model to perform a QRA for five illustrative cases in order to explore the sufficiency of the minimum tunnel safety measures imposed by the Directive when transportation of HGVs and DGs is allowed through the tunnel. The research concludes that, at least for tunnels with marginal values of the EC Directive classes for length and traffic, the risk exposure (F/N curves) lays over the acceptable safety limits of ALARP (as low as reasonably practicable) models. Thus, the manager of the tunnel should take seriously into account the provision of the Directive for further risk analysis and consider more safety measures as well as take into account the risk associated with the alternative routes

    Coordinating Components in the Multimedia System Sercices Architecture

    Get PDF
    The purpose of this work is to examine and exploit the potential of the coordination paradigm to act as the main communication and synchronization mechanism between components forming a distributed multimedia environment and exhibiting real-time properties. Towards this purpose, we have developed a mechanism for coordinating the distributed execution of components, as these are defined by the Multimedia System Services Architecture (MSSA). Our coordination environment uses the control-driven approach to coordination, namely the model IWIM and the associated language Manifold. In the process we show how Manifold can be used to realize object communication and synchronization of MSSA components and we present a methodology of combining a software architecture such as MSSA with a coordination language such as Manifold. We illustrate our approach by means of a suitable example

    The spinorial geometry of supersymmetric heterotic string backgrounds

    Full text link
    We determine the geometry of supersymmetric heterotic string backgrounds for which all parallel spinors with respect to the connection ^\hat\nabla with torsion HH, the NS\otimesNS three-form field strength, are Killing. We find that there are two classes of such backgrounds, the null and the timelike. The Killing spinors of the null backgrounds have stability subgroups K\ltimes\bR^8 in Spin(9,1)Spin(9,1), for K=Spin(7)K=Spin(7), SU(4), Sp(2)Sp(2), SU(2)×SU(2)SU(2)\times SU(2) and {1}\{1\}, and the Killing spinors of the timelike backgrounds have stability subgroups G2G_2, SU(3), SU(2) and {1}\{1\}. The former admit a single null ^\hat\nabla-parallel vector field while the latter admit a timelike and two, three, five and nine spacelike ^\hat\nabla-parallel vector fields, respectively. The spacetime of the null backgrounds is a Lorentzian two-parameter family of Riemannian manifolds BB with skew-symmetric torsion. If the rotation of the null vector field vanishes, the holonomy of the connection with torsion of BB is contained in KK. The spacetime of time-like backgrounds is a principal bundle PP with fibre a Lorentzian Lie group and base space a suitable Riemannian manifold with skew-symmetric torsion. The principal bundle is equipped with a connection λ\lambda which determines the non-horizontal part of the spacetime metric and of HH. The curvature of λ\lambda takes values in an appropriate Lie algebra constructed from that of KK. In addition dHdH has only horizontal components and contains the Pontrjagin class of PP. We have computed in all cases the Killing spinor bilinears, expressed the fluxes in terms of the geometry and determine the field equations that are implied by the Killing spinor equations.Comment: 73pp. v2: minor change

    An Aggregation-Based Algebraic Multigrid Method with Deflation Techniques and Modified Generic Factored Approximate Sparse Inverses

    Get PDF
    In this paper, we examine deflation-based algebraic multigrid methods for solving large systems of linear equations. Aggregation of the unknown terms is applied for coarsening, while deflation techniques are proposed for improving the rate of convergence. More specifically, the V-cycle strategy is adopted, in which, at each iteration, the solution is computed by initially decomposing it utilizing two complementary subspaces. The approximate solution is formed by combining the solution obtained using multigrids and deflation. In order to improve performance and convergence behavior, the proposed scheme was coupled with the Modified Generic Factored Approximate Sparse Inverse preconditioner. Furthermore, a parallel version of the multigrid scheme is proposed for multicore parallel systems, improving the performance of the techniques. Finally, characteristic model problems are solved to demonstrate the applicability of the proposed schemes, while numerical results are given

    An Adaptation Reasoning Approach for Large Scale Component-based Applications

    Get PDF
    There is a growing demand for context-aware applications that can dynamically adapt to their run-time environment. An application offers a collection of functionalities that can be realized through a composition of software components and/or services that are made available at runtime. With the availability of alternative variants of such components and/or services that provide the basic functionalities, while differ in extra-functional characteristics, characterized by quality of services (QoS), an unforeseen number of application variants can be created. The variant that best fits the current context is selected through adaptation reasoning, which can suffer from the processing capabilities of resource-scarce mobile devices, especially when a huge number of application variants needs to be reason about. In this paper, we present a reasoning approach, which provides a meaningful adaptation decision for adaptive applications having a large number of variants within a reasonable time frame. The approach is validated through two arbitrary applications with large number of variants. Keywords: self-adaptation, ubiquitous computing, adaptation reasoning, variability, scalability, utility functio

    A survey on cost-effective context-aware distribution of social data streams over energy-efficient data centres

    Get PDF
    Social media have emerged in the last decade as a viable and ubiquitous means of communication. The ease of user content generation within these platforms, e.g. check-in information, multimedia data, etc., along with the proliferation of Global Positioning System (GPS)-enabled, always-connected capture devices lead to data streams of unprecedented amount and a radical change in information sharing. Social data streams raise a variety of practical challenges, including derivation of real-time meaningful insights from effectively gathered social information, as well as a paradigm shift for content distribution with the leverage of contextual data associated with user preferences, geographical characteristics and devices in general. In this article we present a comprehensive survey that outlines the state-of-the-art situation and organizes challenges concerning social media streams and the infrastructure of the data centres supporting the efficient access to data streams in terms of content distribution, data diffusion, data replication, energy efficiency and network infrastructure. We systematize the existing literature and proceed to identify and analyse the main research points and industrial efforts in the area as far as modelling, simulation and performance evaluation are concerned

    Penrose limits, supergravity and brane dynamics

    Get PDF
    We investigate the Penrose limits of classical string and M-theory backgrounds. We prove that the number of (super)symmetries of a supergravity background never decreases in the limit. We classify all the possible Penrose limits of AdS x S spacetimes and of supergravity brane solutions. We also present the Penrose limits of various other solutions: intersecting branes, supersymmetric black holes and strings in diverse dimensions, and cosmological models. We explore the Penrose limit of an isometrically embedded spacetime and find a generalisation to spaces with more than one time. Finally, we show that the Penrose limit is a large tension limit for all branes including those with fields of Born--Infeld type.Comment: 67 page

    Coordination via Interaction Constraints I: Local Logic

    Full text link
    Wegner describes coordination as constrained interaction. We take this approach literally and define a coordination model based on interaction constraints and partial, iterative and interactive constraint satisfaction. Our model captures behaviour described in terms of synchronisation and data flow constraints, plus various modes of interaction with the outside world provided by external constraint symbols, on-the-fly constraint generation, and coordination variables. Underlying our approach is an engine performing (partial) constraint satisfaction of the sets of constraints. Our model extends previous work on three counts: firstly, a more advanced notion of external interaction is offered; secondly, our approach enables local satisfaction of constraints with appropriate partial solutions, avoiding global synchronisation over the entire constraints set; and, as a consequence, constraint satisfaction can finally occur concurrently, and multiple parts of a set of constraints can be solved and interact with the outside world in an asynchronous manner, unless synchronisation is required by the constraints. This paper describes the underlying logic, which enables a notion of local solution, and relates this logic to the more global approach of our previous work based on classical logic

    Simulating fog and edge computing scenarios: an overview and research challenges

    Get PDF
    The fourth industrial revolution heralds a paradigm shift in how people, processes, things, data and networks communicate and connect with each other. Conventional computing infrastructures are struggling to satisfy dramatic growth in demand from a deluge of connected heterogeneous endpoints located at the edge of networks while, at the same time, meeting quality of service levels. The complexity of computing at the edge makes it increasingly difficult for infrastructure providers to plan for and provision resources to meet this demand. While simulation frameworks are used extensively in the modelling of cloud computing environments in order to test and validate technical solutions, they are at a nascent stage of development and adoption for fog and edge computing. This paper provides an overview of challenges posed by fog and edge computing in relation to simulation

    On issues concerning Cloud environments in scope of scalable multi-projection methods

    Get PDF
    Over the last decade, Cloud environments have gained significant attention by the scientific community, due to their flexibility in the allocation of resources and the various applications hosted in such environments. Recently, high performance computing applications are migrating to Cloud environments. Efficient methods are sought for solving very large sparse linear systems occurring in various scientific fields such as Computational Fluid Dynamics, N-Body simulations and Computational Finance. Herewith, the parallel multi-projection type methods are reviewed and discussions concerning the implementation issues for IaaS-type Cloud environments are given. Moreover, phenomena occurring due to the "noisy neighbor" problem, varying interconnection speeds as well as load imbalance are studied. Furthermore, the level of exposure of specialized hardware residing in modern CPUs through the different layers of software is also examined. Finally, numerical results concerning the applicability and effectiveness of multi-projection type methods in Cloud environments based on OpenStack are presented
    corecore